RADIANT HEAT TRANSFER AND HEAT CONDUCTION
IN PARALLEL PLATES WITH LATERAL SUPPLY
(REMOVAL) OF HEAT

A. G. Golubchin UDC 536.21:536.33:518.3

An analysis is given of radiative and conductive heat transfer in parallel plates with
lateral supply (removal) of heat. An approximation method for the solution of heat~
transfer equations is presented, and the results of the calculations are represented by

nomograms.

In the process of thermal treatment of thin ceramic products collected into a cassette or hollow
ceramic tiles, the transfer of heat takes place by heat conduction in the mass of the product and by radia-
tion across the gap.

For a mathematical description of the conditions of heat exchange, we construct balanced equations
of heat transfer by thermal conduction and radiation with the following assumptions: the supply (removal)
of heat is symmetrical, from the ends; the temperature of the heater (cooler) is equal to the temperature
of the end of the produét T;; the emissivity of the surfaces taking part in the heat exchange is equal to
unity; the convective component of the heat exchange is small and is not considered in the calculation,

We examine the conditions of heat exchange in the system (Fig. 1). For the analysis we select ele-
mentary areas dx and dy on the lower and upper surfaces of the gap. Heat arrives at the area dx by radia-
tion from the heaters I and II and the upper surface of the gap, as well as by heat conduction through the
' plate. Heat is dispersed in radiation of the area and by the internal heat absorption qx. The heat balance
between the elementary area dx and the surrounding medium is written in the following form:
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In accordance with the principle of reversibility of angular coefficients,
hey gy = dxQy, 15 ARy 4 = Xy 15 AYPay.ax = GXax,ay-
We determine the angular coefficients by the method proposed by Jacob [1, 2]:
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Substituting the expressions for the angular coefficients Pdx,1» Pdx,ID and Pax,dy into Eq. (1) we obtain
the first equation of the system '
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We reduce the equation to a suifable dimensioniess form with the help of the variabies
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where N[, = 0yT}1%/ A8, is a thermophysical parameter representing the ratio of the radiation intensity of
the surface of the gap at the temperature T, to the normal component of the heat conduction of the plate; h
/1 is a geometrical parameter (the ratio of the height of the gap to its width).

We obtain analogous equations for the composition of the heat balance between the elementary area
dy and the surrounding medium

— 1—Y Y
ei/—qu——:l—" e — 7 PR .
PN vy L R
u/(l)\( vy 2]/(l)+
4 (¢
I ok L Py o G TiP
4 dY 4= S5y S 3
2 [(2‘—)2 + (Y — X)Z]W Ne dy® AB,
*

If plates of identical thickness &; = 6, = & are examined, then 6x = 0y, dx = EY, N, = Né' =Ng. In
this case in place of the system of equations the heat-exchange conditions may be wriiten in one nonlinear
infegrodifferenfial eguation
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There are two unknowns in this equation; qx and 6y.

To solve the equation it is necessary, firsf, to represent the heat flux QX in the form of a function
of other variables or to assign it a constant value, and second, in place of the relative temperature gy in
the integrand to substitute an approximation formula expressing the distribution of relative temperatures
along the edge of the gap.

As a result of the studies conducted on the experimental apparatus it was established that the dis-
tribution of relative heat ﬁuxes along the edge of the gap in the principal heating and cooling zones is ex-
pressed by the formula qX qc = const. For the conditions of exposure at the maximum firing temperature
dx =gcSin7X. The nature of the distribution of relative temperatures ajong the edge of the gap during
the heating period has the following dependence: gx =1 —AgxsinmX, where Agx is the relative tempera-
ture drop allowed because of the generation of thermal stresses in the product [3].
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After substituting the expressions obtained for qx and
6x in Eq. @), and considering that the given equation is ac-

= Yy = — curate for all values of X and Y from 0 to 1 and consequently
. for X and Y equal to 0.5, we obtain a nonlinear aigebraic
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the solution of which is presented in nomogram 1 (Fig. 2) for a wide range of variation of the parameters
Afx, b/, and N,

This nomogram is accurate both for the condition EX = q_c = const, which allows the calculation of
permissible heating temperatures, and for the condition gy =@, sintX, as a result of which one can de-
termine the time necessary for equalization of the temperature along the edge of the plate during the ex-
posure period.

The nomogram is composite: the value of the heat flux contributing to the heat-conduction portion
is determined in the right-hand part, and the radiant component of the heat flux on the left.

We determine on the nomogram the temperature T, at which the amounts of heat supplied to the
elementary area by heat conduction and by radiation are equal.

The initial data are: A9x =0.15h/1 =0.1;7 =0.15 m; 26 = 0.010 m; A =1.0 W/ m? - deg.

In the right-hand part of the nomogram we determine the value of cTr, which is equal to 0.025. In
the left-hand part of the nomogram for Agx =0.1 and q, = gt = 0.025 the thermophysical parameter N is
equal to 40.

The temperature of the end of the plate is

5N 3/ 40.1.0.005
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At a temperature T; = 1270°K, using a value of A of about 1.4 W/ m? - deg, the thermophysical param-~
eter N =480, which according to nomogram 1 at the initial parameters Afx = 0.1 and h/l = 0.1 corre-
Sponds to qt =0.002, i.e., at the given heater temperature the amount of heat entering the elementary area
of the plate surface from radiation is higher by a factor of 12 than the heat introduced by heat conduction.

In an analysis of the conditions of cooling, using the discussion presented above, we obtain a non-
linear integrodifferential equation describing in general form the conditions of cooling:
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Fig. 2. Nomogram 1 for calculation of heat consump_
tion during the heatmg period. qc qr + qt, dy =
—_T Aex/Nc, gy =7 Aax/N
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Fig. 3. Nomogram 2 for calculation of heat loss un-
der conditions of cooling. qg =4qy +qf; q;. = qg
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where K, = 0(T§12/ 0.

Substituting into Eq. (6) functions expressing the nature of the distribution of relative temperatures
and heat fluxes along the edge of the gap under conditions of cooling: #y% =1 + AdxsinrX and qxr = qg
= const, a nonlinear algebraic equation results:
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The solution of Eq. (7) within the limits of variation of the parameters 4y = 0-0.25, h/l =0.1-0.4,
and K, = 20-500 is presented in Fig. 3.

NOTATION

is the absolute temperature;
g, 4 are relative temperatures;
Af is the drop in relative temperature across the plate thickness during the heating period;
A is the drop in relative temperature across the plate thickness during cooling;
is the rate of heat consumption or heat exchange;
is the relative rate of heat consumption or heat exchange;
is the separation between plates;
is the half-width of the plate;
is the plate thickness;
is the coefficient of heat conduction;
is an angular coefficient;
is the radiation constant of an absolutely black body;
is the coordinate along the upper surface of the plate;
is the coordinate along the lower surface of the plate;
are dimensionless coordinates,
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Subscripts
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are radiator (cooler) numbers;

denotes the upper surface of the plate;

denotes the lower surface of the plate;

denotes the constant total value of the heat flux during heating period;
denotes the constant total value of the heat flux during cooling;
denotes the radiant component of heat flux;

denotes the conductive component of the heat flux.
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